ENERGY TRANSFER FROM AN INDUCTIVE STORAGE
TO AN INDUCTIVE LOAD BY MEANS OF AN EXPLOSIVE
CURRENT DISCONNECT
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A study is made of switching of current from an inductive storage by electrical explosion
of a wire shunting an inductance in conformity with a model based on surface vaporization
waves. It is established that the nature of the process is determined by certain generalized
dimensionless parameters of the system. The modes of most efficient transfer of energy
to the load are determined.

The diagram in Fig. 1 corresponds to the completion of charging of an inductive storage from an ex-
ternal energy source and to the beginning of the process of energy transfer from the storage to a load. ¥
the initial conditions are known, the final state of the system (after cutoff of the current in the branch R) is
determined directly from the laws for the conservation of energy and magnetic flux [1]. However, the very
nature of the switching process remains unknown. This process is considered here in conformity with the
model of a current disconnect based on the concept of surface vaporization waves during electrical explo~
sion of a wire [2]. Since the abrupt rise in the resistance of an exploding wire begins in the boiling stage,
we take as initial conditions when t=0 and R=Ry, (resistance of the disconnect at the boiling point}, I,=0,
I=14=]; (it is assumed the discharge gap closes the load branch at t=0). If the initial mass of the discon-
nect is m, and the energy of the electrical explosion per unit mass is g, then, assuming the metal vapor is
nonconducting, we obtain for the resistance of the disconnect

rR=_"b_ w
1 Q4
meq
where Qg is the Joule heat deposited in the disconnect from the time t=0. It
I _p should be noted that it is necessary to determine the quantity q experimentally,
) Iy, since it may be two to three times greater than the latent heat of vaporization
Ls e L, under normal conditions during very fast explosions [3]. The circuit in Fig. 1
| is described by the system of differential equations :
Fig. 1 L %’7 4+ RI4 =0,
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}F? ! /.lg,g We then find the relations characterizing the process of current cutoff,
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Here Qg is the value of the energy transferred to the load, Q= %LSI% is the initial energy in the storage,
and Lg=LgLy,/(Lg+Ly) is the equivalent inductance of the circuit (with respect to the disconnect).

Equations (2)-(4) make it possible to determine the efficiency of energy transfer for incomplete dis-
connection where Ig= 0, and they transform into well-known equations when Ig=0 [1]. We calculate the
current and voltage in the load. In our case, the relation R(t) is not given, and therefore if is impossible
to use Eq. (2) directly. We write it in the form

I g o
—Le—,z't"l"RId =0 (5)

and add an equation which is obtained by differentiation of Eq. (1),

dR
w = m,,qﬂbﬂsfd (6)

Eliminating Iq from the equation system (5), (6), we obtain

d®R dR dR
R —3 (G ) + B =0,

This equation permits a reduction in order and is solved in the form

R [ 1 2
E*(m“@ﬁ LR)RS 0

{here the constant of integration is determined from the initial conditions). For the subsequent analysis,
it is convenient to introduce the dimensionless quantities
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Integration of Eq. (7) gives for the resistance

1

. |
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and after substitution of Eq. (7) into Eq. (6), we find
. a 1 1 (9
ta=1/ 1_7(1_ ?),
’ 1 1

u:rl/i——A-(l——r—), (10)

The current in the load is easily determined from the conservation of magnetic flux in the storage—load

circuit
.. 1 1 (11
lL—lst[i_V1~7(1—T)a )

where igt =1/[1+(Ly,/Lg)] is the stabilized value of the current in the circuit (after cutoff of the current
in the disconnect circuit).

We now consider three particular cases separately.
1. Low-energy mode, A=Lgl3/ 2myq< 1.

In this case, complete vaporization of the disconnect does not occur and the variation in current, re-
sistance, and voltage does not have the nature of an explosion. In fact, it is clear from Eq. (8) that the
quantity r is bounded for any x. The maximum value ry; which is reached in this mode when x— <« is de-
termined from
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¢ Figures 2-4 show r(x), u(x), and i1,{x)/ig plotted in accordance with
I Egs. (8), (10), and (11). For A<1, all three quantities reach their sta-

6 -
/ bilized values when x— =, i.e., asymptotically.
4 2. High-energy mode, A> 1.
A=2 The resistance of the disconnect goes fo infinity after a finite ex~
2 7 . .
iy plosion time.
%2 1 In(1 ! (
A F o o when & — Tey— 5 [1 +(A—1)n(t— 7—)] 12)
Fig. 3 At this time, the current in the disconnect differs from zero
. 1
. r= iq = i — =
1L/1st 7} /0:9- J— ‘%X’ V .
a8 / P and, consequently, the voltage on it goes to infinity, u— « when x—=xgx.
)4 Physically, this means that electrical explosion of a wire does not lead
04 4= ]’ in this case to current cutoff in this branch. Because of the overvoltage
, | (theoretically infinitely great), there should occur a breakdown of the
0 ' 7 7 58 RN gap which is formed after explosion of the disconnect. We point out that

it is impossible to avoid this breakdown by any means because one of the
Fig. 4 conservation principles (for energy or for magnetic flux) would other-

wise be violated. The current in the discharge channel will flow until
the total energy absorbed in this branch from the time t=0 reaches the value defined by Eq. (3). Following
this, the discharge is quenched regardless of the value of the resistance in the discharge channel. The na-
ture of the variation of resistance, current, and voltage in the disconnect branch after breakdown of the gap
is determined by the specific discharge conditions. The duration of the electrical explosion, xgx, decreases
with increase in the parameter A for

1,

A>1 Iex%/iLA’ idzi—zlz; i, ——~2-;£.
As A increases, Xex decreases and the switching becomes poorer (the disconnect current ig cannot be re-
duced significantly after the time fgx and the load current iy, cannot be increased). The main part of the
switching process is accomplished in an uncontrolled fashion after breakdown of the gap. The curves r(z),
i1,(x), and u(x) for A=2 are shown in Figs. 2, 3, and 4.

3. Critical mode, A=1.

In this case, Egs. (8)-(11) are considerably simplified:

e by =V1— 25 u= i =i (1—VT—%)

l .
Viez'
The quantity r goes to infinity for xgx =1/2. Thenig=0, u— «. This means the electrical explosion of the
disconnect is either completely unaccompanied by breakdown of the gap (if the discharge cannot be formed
during the short time in which the overvoltage pulse is effective) or a breakdown is started but the dis—
charge current is very low and dies out quickly.

In conclusion, we turn to the question of the limits of applicability of the surface vaporization model
assumed. The problem is rather complex and requires special consideration. However, it is clear from
Eq. (12) that the time Xex can become as small as desired through an increase in A. Atthe same time, it
is clear that the velocity of the surface vaporization wave front (v) is finite (it cannot exceed the velocity
of sound in liquid metal) and therefore tox =1 /v, where [ is some cross-sectional dimension of the discon-
nect (for a wire, the radius; for a foil, the half-thickness). This inequality also determines the limit of
applicability of the surface vaporization model; if A is so large that Eq. (12) is inconsistent with the in~
equality, then the model is inapplicable. From published data [3], the velocity v does not exceed 200 m/sec,
which corresponds (for 7<0.1 mm) to a tgy of tens and hundreds of nanoseconds. Such switching times
have been observed experimentally [2, 4].
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